Módulo II: Representaciones de lo invisible: estructura atómica, formación de iones y moléculas

"Cada día sabemos más y entendemos menos".

                                                                                          Albert Einstein

Breve historia sobre teorías atómicas

Demócrito de Abdera
Demócrito de Abdera

 

Demócrito "el filósofo risueño"

 

Años después, Demócrito dijo -la tierra, el cielo, los océanos, la vegetación y todos los seres vivientes-, está integrado por pequeñísimas partículas, agrupadas compactamente como las abejas en una colmena. Demócrito llamó átomos a esas partículas, palabras griega que significa "indivisible", o sea que no se puede separar. Esta teoría de las partículas, aparentemente absurda, fue atacada nada menos que por Aristóteles, el célebre filósofo, uno de los más grandes pensadores griegos que han existido. Desacreditó en forma tal la teoría de Demócrito, que tuvieron que transcurrir más de dos mil años antes de que los hombres de ciencia volvieran a tomarla en consideración.

Cuando lo hicieron, comprendieron que un solo detalle en la teoría de Demócrito era el que la había hecho apartarse de todas las extrañas teorías que la habían precedido. Hasta cierto punto, por lo menos, Demócrito tenía la razón.

 

Aristóteles de Estagira
Aristóteles de Estagira

Un filósofo con prestigio: Aristóteles 

 

Aristóteles había creído que toda la materia estaba hecha de cuatro "elementos": fuego, agua, tierra y aire, una teoría que no difería en mucho de las de Tales de Mileto y de otros filósofos. Como Aristóteles era un sabio, la gente aceptaba la teoría de los cuatro elementos y el avance del estudio de la materia quedó estancado durante varios siglos. (La teoría de Aristóteles de los cuatro elementos aún subsisten en el viejo dicho: "Desafía los elementos", palabras que se emplean durante un hombre sale a la calle cuando sopla en viento y cae la lluvia).
Durante todo el período que estuvo dominado por la teoría de Aristóteles de los cuatro elementos no hubo hombres de ciencia tal como los conocemos hoy. Es decir, no hubo químicos que se dedicaran a investigar los secretos de la materia, había, en cambio, alquimistas, personas que buscaban la forma de transformar el plomo, un metal barato y abundante, en oro, para que sus amos se enriquecieran. Aristóteles sugirió que eso podría ser posible, ya que, según él, todos los metales estaban formados de los mismos cuatro elementos.
Finalmente, casi dos mil años después de Aristóteles, un joven matemático Italiano llamado Galileo empezó a analizar todas las teorías antiguas.
Lo más importante de aquello resultó que él, por medio de sus experimentos, ofreció probar que muchas de las teorías científicas de Aristóteles eran erróneas. Su contribución al descubrimiento de la naturaleza del átomo fue lograr persuadir a los hombres de ciencia de su época de que solo aceptaran como validas todas aquellas teorías e ideas que pudieran ser probadas experimentalmente.

  

 

Nacimiento de la teoría atómica moderna

Modelo atómico de Dalton 

 

Durante el siglo XVIII y los primeros años del siglo XIX, en su afán por conocer e interpretar la naturaleza, los científicos estudiaron intensamente las reacciones químicas mediante numerosos experimentos. Estos estudios permitieron hallar relaciones muy precisas entre las masas de las sustancias sólidas o entre los volúmenes de los gases que intervienen en las reacciones químicas. Las relaciones encontradas se conocen como leyes de la química. Entre las leyes fundamentales de la Química, hay algunas que establecen las relaciones entre masas, llamadas leyes gravimétricas y otras que relacionan volúmenes, denominadas leyes volumétricas. John Dalton desarrolló su modelo atómico, en la que proponía que cada elemento químico estaba compuesto por átomos iguales y exclusivos, y que aunque eran indivisibles e indestructibles, se podían asociar para formar estructuras más complejas (los compuestos químicos).

Thomson y su experimentación
Thomson y su experimentación

  Descubrimiento de las partículas subatómicas 

 

Modelo atómico de Thomson 

El tubo de rayos catódicos de Thomson, en el que observó la desviación de los rayos catódicos por un campo eléctrico.

Hasta 1897, se creía que los átomos eran la división más pequeña de la materia, cuando J.J Thomson descubrió el electrón mediante su experimento con el tubo de rayos catódicos. El tubo de rayos catódicos que usó Thomson era un recipiente cerrado de vidrio, en el cual los dos electrodos estaban separados por un vacío. Cuando se aplica una diferencia de tensión a los electrodos, se generan rayos catódicos, que crean un resplandor fosforescente cuando chocan con el extremo opuesto del tubo de cristal. Mediante la experimentación, Thomson descubrió que los rayos se desviaban al aplicar un campo eléctrico (además de desviarse con los campos magnéticos, cosa que ya se sabía). Afirmó que estos rayos, más que ondas, estaban compuestos por partículas cargadas negativamente a las que llamó "corpúsculos" (más tarde, otros científicos las rebautizarían como electrones).

Experimento de Rutherford
Experimento de Rutherford

Descubrimiento del núcleo

 

Modelo atómico de Rutherford

 

El modelo atómico de Thomson fue refutado en 1909 por uno de sus estudiantes, Ernest Rutherford, quien descubrió que la mayor parte de la masa y de la carga positiva de un átomo estaba concentrada en una fracción muy pequeña de su volumen, que suponía que estaba en el mismo centro.En su experimento, Hans Geiger y Ernest Marsden bombardearon partículas alfa a través de una fina lámina de oro (que chocarían con una pantalla fluorescente que habían colocado rodeando la lámina). Dada la mínima como masa de los electrones, la elevada masa y momento de las partículas alfa y la distribución uniforme de la carga positiva del modelo de Thomson, estos científicos esperaban que todas las partículas alfa atravesasen la lámina de oro sin desviarse, o por el contrario, que fuesen absorbidas. Para su asombro, una pequeña fracción de las partículas alfa sufrió una fuerte desviación. Esto indujo a Rutherford a proponer el modelo planetario del átomo, en el que los electrones orbitaban en el espacio alrededor de un gran núcleo compacto, a semejanza de los planetas y el Sol.

JAMES CHADWICK (1891- 1974) y El descubrimiento del neutrón
JAMES CHADWICK (1891- 1974) y El descubrimiento del neutrón

Descubrimiento del neutrón

 

En 1928, Walther Bothe observó que el berilio emitía una radiación eléctricamente neutra cuando se le bombardeaba con partículas alfa. En 1932, James Chadwick expuso diversos elementos a esta radiación y dedujo que ésta estaba compuesta por partículas eléctricamente neutras con una masa similar la de un protón. Chadwick llamó a estas partículas "neutrones". 

En 1928, Walther Bothe observó que el berilio emitía una radiación eléctricamente neutra cuando se le bombardeaba con partículas alfa. En 1932, James Chadwick expuso diversos elementos a esta radiación y dedujo que ésta estaba compuesta por partículas eléctricamente neutras con una masa similar la de un protón. Chadwick llamó a estas partículas "neutrones".

Niels Bohr y su modelo atómico
Niels Bohr y su modelo atómico

  Modelos cuánticos del átomo

 

Modelo atómico de Schrödinger, Modelo atómico de Bohr y Modelo atómico de Sommerfeld 

 

 El modelo de Bohr

 

La teoría cuántica revolucionó la física de comienzos del siglo XX, cuando Max Planck y Albert Einstein postularon que se emite o absorbe una leve cantidad de energía en cantidades fijas llamadas cuantos. En 1913, Niels Bohr incorporó esta idea a su modelo atómico, en el que los electrones sólo podrían orbitar alrededor del núcleo en órbitas circulares determinadas, con una energía y un momento angular fijos, y siendo proporcionales las distancias del núcleo a los respectivos niveles de energía. Según este modelo, los átomos no podrían describir espirales hacia el núcleo porque no podrían perder energía de manera continua; en cambio, sólo podrían realizar "saltos cuánticos" instantáneos entre los niveles fijos de energía. Cuando esto ocurre, el átomo absorbe o emite luz a una frecuencia proporcional a la diferencia de energía (y de ahí la absorción y emisión de luz en los espectros discretos).

 

Arnold Sommerfeld
Arnold Sommerfeld

 

Las órbitas elípticas de Sommerfeld: 

 

Arnold Sommerfeld amplió el átomo de Bohr en 1916 para incluir órbitas elípticas, utilizando una cuantificación de momento generalizado.El modelo de Bohr-Sommerfeld era muy difícil de utilizar, pero a cambio hacía increíbles predicciones de acuerdo con ciertas propiedades espectrales. Sin embargo, era incapaz de explicar los átomos multielectrónicos, predecir la tasa de transición o describir las estructuras finas e hiperfinas.

 

 

Erwin Schrödinger y su modelo de átomo
Erwin Schrödinger y su modelo de átomo

 

El modelo mecánico cuántico de Erwin Schrödinger

 

En 1924, Louis de Broglie propuso que todos los objetos, particularmente las partículas subatómicas, como los electrones, podían tener propiedades de ondas. Erwin Schrödinger, fascinado por esta idea, investigó si el movimiento de un electrón en un átomo se podría explicar mejor como onda que como partícula. La ecuación de Schrödinger, publicada en 1926, describe al electrón como una función de onda en lugar de como una partícula, y predijo muchos de los fenómenos espectrales que el modelo de Bohr no podía explicar. Aunque este concepto era matemáticamente correcto, era difícil de visualizar, y tuvo sus detractores. Uno de sus críticos, Max Born, dijo que la función de onda de Schrödinger no describía el electrón, pero sí a muchos de sus posibles estados, y de esta forma se podría usar para calcular la probabilidad de encontrar un electrón en cualquier posición dada alrededor del núcleo. En 1927, Werner Heisenberg indicó que, puesto que una función de onda está determinada por el tiempo y la posición, es imposible obtener simultáneamente valores precisos tanto para la posición como para el momento de la partícula para cualquier punto dado en el tiempo. Este principio fue conocido como principio de incertidumbre de Heisenberg. 

En 1924, Louis de Broglie propuso que todos los objetos —particularmente las partículas subatómicas, como los electrones— podían tener propiedades de ondas. Erwin Schrödinger, fascinado por esta idea, investigó si el movimiento de un electrón en un átomo se podría explicar mejor como onda que como partícula. La ecuación de Schrödinger, publicada en 1926, describe al electrón como una función de onda en lugar de como una partícula, y predijo muchos de los fenómenos espectrales que el modelo de Bohr no podía explicar. Aunque este concepto era matemáticamente correcto, era difícil de visualizar, y tuvo sus detractores. Uno de sus críticos, Max Born, dijo que la función de onda de Schrödinger no describía el electrón, pero sí a muchos de sus posibles estados, y de esta forma se podría usar para calcular la probabilidad de encontrar un electrón en cualquier posición dada alrededor del núcleo. En 1927, Werner Heisenberg indicó que, puesto que una función de onda está determinada por el tiempo y la posición, es imposible obtener simultáneamente valores precisos tanto para la posición como para el momento de la partícula para cualquier punto dado en el tiempo. Este principio fue conocido como principio de incertidumbre de Heisenberg.

Estructura atómica

 

En el átomo distinguimos dos zonas: el núcleo y la periferia.

 

  •        El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, los neutrones. La masa de un protón es aproximadamente igual a la de un neutrón.

Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z.

 

  •        La periferia es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón.

 

Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones.

 

modelo atómico que muestra su estructura
modelo atómico que muestra su estructura

 

Isótopos

 

La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones.

Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico.

 

Para representar un isótopo, hay que indicar el número másico (A) propio del isótopo y el número atómico (Z), colocados como índice y subíndice, respectivamente, a la izquierda del símbolo del elemento.

 

A continuación se muestran los isótopos del átomo de Hidrógeno:

Escribir comentario

Comentarios: 0